Experimental investigation on fatigue life and tensile strength of carbon fiber-reinforced PLA composites based on fused deposition modeling

Author:

Kargar Ehsan,Ghasemi-Ghalebahman Ahmad

Abstract

AbstractFused deposition modeling (FDM) is a widely used additive manufacturing (AM) method that offers great flexibility in fabricating complex geometries without requiring expensive equipment. However, compared to other manufacturing methods, FDM-produced parts generally exhibit lower strength and fatigue life. To overcome this limitation, researchers have explored the use of fibers and reinforcements to enhance the mechanical properties of FDM parts. Nevertheless, the performance of FDM-produced parts can be significantly affected by various manufacturing parameters, including infill density, which is a key factor in balancing time and cost. In this study, the tensile strength and fatigue life of carbon fiber-reinforced polylactic acid (PLA) composites produced by FDM were investigated by varying the infill density (50 and 75%) and raster angle (0°, 45°, and 90°). The effects of 100% filling density, raster width, and nozzle diameter on mechanical properties were also examined. The experimental results demonstrated that increasing the infill density and decreasing the raster angle can enhance the tensile strength, although the fatigue behavior was found to be more complex and dependent on the infill density. The optimal parameters for producing FDM parts with improved mechanical properties were identified based on the analysis of the tensile strength and fatigue life data. This research has yielded significant findings concerning the diverse fatigue behavior associated with the raster angle at different infill densities. Specifically, noteworthy observations reveal that a raster angle of 45 degrees at 50% infill density, and a raster angle of 0 degrees at 75% infill density, exhibited the most prolonged fatigue life. This outcome can be ascribed to the specific loading conditions and the inherent strength of the sediment layer at the critical point of stress concentration.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3