Abstract
AbstractChlamydia trachomatis (CT) increases its plasmid numbers when stressed, as occurs in clinical trachoma samples. Most CT tests target the plasmid to increase the test sensitivity, but some only target the chromosome. We investigated clinical urogenital samples for total plasmid copy numbers to assess its diagnostic value and intra-bacterial plasmid copy numbers to assess its natural variation. Both plasmid and chromosome copies were quantified using qPCR, and the plasmid:chromosome ratio (PCr) calculated in two cohorts: (1) 383 urogenital samples for the total PCR (tPCr), and (2) 42 vaginal swabs, with one half treated with propium-monoazide (PMA) to prevent the quantification of extracellular DNA and the other half untreated to allow for both tPCr and intra-bacterial PCr (iPCr) quantification. Mann–Whitney U tests compared PCr between samples, in relation to age and gender. Cohort 1: tPCr varied greatly (1–677, median 16). Median tPCr was significantly higher in urines than vaginal swabs (32 vs. 11, p < 0.001). Cohort 2: iPCr was more stable than tPCr (range 0.1–3 vs. 1–11). To conclude, tPCr in urogenital samples was much more variable than previously described. Transport time and temperature influences DNA degradation, impacting chromosomal DNA more than plasmids and urine more than vaginal samples. Data supports a plasmid target in CT screening assays to increase clinical sensitivity.
Publisher
Springer Science and Business Media LLC
Reference30 articles.
1. World Health Organisation. Prevalence and incidence of selected sexually transmitted infections, Chlamydia trachomatis, Neisseria gonorrhoeae, syphilis and Trichomonas vaginalis: methods and results used by WHO to generate 2005 estimates (2011).
2. Haggerty, C. L. et al. Risk of sequelae after Chlamydia trachomatis genital infection in women. J. Infect. Dis. 201(Suppl 2), S134-155. https://doi.org/10.1086/652395 (2010).
3. Sengupta, M. & Austin, S. Prevalence and significance of plasmid maintenance functions in the virulence plasmids of pathogenic bacteria. Infect. Immun. 79, 2502–2509. https://doi.org/10.1128/iai.00127-11 (2011).
4. Rockey, D. D. Unraveling the basic biology and clinical significance of the chlamydial plasmid. J. Exp. Med. 208, 2159–2162. https://doi.org/10.1084/jem.20112088 (2011).
5. Song, L. et al. Chlamydia trachomatis plasmid-encoded Pgp4 is a transcriptional regulator of virulence-associated genes. Infect. Immun. 81, 636–644. https://doi.org/10.1128/IAI.01305-12 (2013).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献