Gravity-induced seismicity modulation on planetary bodies and their natural satellites

Author:

Senapati Batakrushna,Kundu Bhaskar,Jha Birendra,Jin Shuanggen

Abstract

AbstractGround-based monitoring of seismicity and modulation by external forces in the field of planetary seismology remains equivocal due to the lack of natural observations. Constrained by the natural observations (including Earthquakes, Moonquakes, and Marsquakes) and theoretical models, we present the variation in gravitational acceleration “g” of different solar system objects, combined with external harmonic forcings that are responsible for seismicity modulation on the planetary bodies and their natural satellites. From the global diversity in seismicity modulation, it has been observed that the plate-boundary regions on the Earth exhibit both short and long-period seismicity modulation. In contrast, the stable plate interior regions appear to be more sensitive to long-period seismicity modulation, however, lacking in short-period modulation. The deep Moonquakes are susceptible for both the lunar tidal period (13.6 days and 27 days) and long-period pole wobble modulation (206 days), whereas shallow emergent type moonquakes show a seismic periodicity at the lunation period (29.5 days). Further, the seasonal variation with an annual seismicity burst and seismic periodicity at polar wobble periods for high-frequency Marsquakes captured by InSight lander indicate a natural origin. Whereas diurnal and semi-diurnal periodicity along with Phobos’ tidal period, indicate possible artifacts due to different detection probabilities and non-seismic noise in the Martian environment. We argue that, in the context of rate-state-dependent fault friction, the gravity-induced resonance destabilization model appears to be better agreement with the contrast and relative diversity in seismicity modulation linked to the Earth, Moon, and Mars.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference84 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3