Stripe noise removal in conductive atomic force microscopy

Author:

Li Mian,Rieck Jan,Noheda Beatriz,Roerdink Jos B. T. M.,Wilkinson Michael H. F.

Abstract

AbstractConductive atomic force microscopy (c-AFM) can provide simultaneous maps of the topography and electrical current flow through materials with high spatial resolution and it is playing an increasingly important role in the characterization of novel materials that are being investigated for novel memory devices. However, noise in the form of stripe features often appear in c-AFM images, challenging the quantitative analysis of conduction or topographical information. To remove stripe noise without losing interesting information, as many as sixteen destriping methods are investigated in this paper, including three additional models that we propose based on the stripes characteristics, and thirteen state-of-the-art destriping methods. We have also designed a gradient stripe noise model and obtained a ground truth dataset consisting of 800 images, generated by rotating and cropping a clean image, and created a noisy image dataset by adding random intensities of simulated noise to the ground truth dataset. In addition to comparing the results of the stripe noise removal visually, we performed a quantitative image quality comparison using simulated datasets and 100 images with very different strengths of simulated noise. All results show that the Low-Rank Recovery method has the best performance and robustness for removing gradient stripe noise without losing useful information. Furthermore, a detailed performance comparison of Polynomial fitting and Low-Rank Recovery at different levels of real noise is presented.

Funder

EU’s Horizon 2020 programme

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3