Ancient DNA reveals phenological diversity of Coast Salish herring harvests over multiple centuries

Author:

Petrou Eleni L.,Kopperl Robert,Lepofsky Dana,Rodrigues Antonia T.,Yang Dongya,Moss Madonna L.,Speller Camilla F.,Hauser Lorenz

Abstract

AbstractPhenological diversity in food resources prolongs foraging opportunities for consumers and buffers them against environmental disturbances. Such diversity is particularly important in forage fish such as Pacific herring (Clupea pallasii), which are foundational to coastal food webs and fisheries. While the importance of phenological diversity is well-known from contemporary studies, the extent to which different populations contribute to fisheries over long time scales is mostly unknown. In this study, we investigated the relative contributions of genetically and phenologically distinct herring populations to Indigenous Peoples’ food systems over multiple centuries, using ancient DNA extracted from archaeological herring bones. These bones were excavated from two Coast Salish archaeological sites (Burton Acres Shell Midden and Bay Street Shell Midden) in the Puget Sound region, USA. Using genetic stock identification from seven nuclear DNA markers, we showed that catches at the two sites in central Puget Sound were dominated by January–February and March–April spawners, which are the contemporary spawning groups in the vicinity of the sites. However, May spawners were detected in the older Burton Acres assemblage (dated to 910–685 cal BP), and a mixed stock analysis indicated that catches at this site consisted of multiple populations. These results suggest that Coast Salish ancestors used a portfolio of herring populations and benefited from the ecological resource wave created by different spawning groups of herring. This study of ancient DNA allowed us to glimpse into Indigenous traditional food and management systems, and it enabled us to investigate long-term patterns of biodiversity in an ecologically important forage fish species.

Funder

Washington Sea Grant, University of Washington

National Science Foundation, United States

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3