NK cell marker gene-based model shows good predictive ability in prognosis and response to immunotherapies in hepatocellular carcinoma

Author:

Li Juan,Li Yi,Li Fulei,Xu Lixia

Abstract

AbstractHepatocellular carcinoma (HCC) is the fourth leading cause of malignancy worldwide, and its progression is influenced by the immune microenvironment. Natural killer (NK) cells are essential in the anti-tumor response and have been linked to immunotherapies for cancers. Therefore, it is important to unify and validate the role of NK cell-related gene signatures in HCC. In this study, we used RNA-seq analysis on HCC samples from public databases. We applied the ConsensusClusterPlus tool to construct the consensus matrix and cluster the samples based on their NK cell-related expression profile data. We employed the least absolute shrinkage and selection operator regression analysis to identify the hub genes. Additionally, we utilized the CIBERSORT and ESTIMATE web-based methods to perform immune-related evaluations. Our results showed that the NK cell-related gene-based classification divided HCC patients into three clusters. The C3 cluster was activated in immune activation signaling pathways and showed better prognosis and good clinical features. In contrast, the C1 cluster was remarkably enriched in cell cycle pathways. The stromal score, immune score, and ESTIMATE score in C3 were much higher than those in C2 and C1. Furthermore, we identified six hub genes: CDC20, HMOX1, S100A9, CFHR3, PCN1, and GZMA. The NK cell-related genes-based risk score subgroups demonstrated that a higher risk score subgroup showed poorer prognosis. In summary, our findings suggest that NK cell-related genes play an essential role in HCC prognosis prediction and have therapeutic potential in promoting NK cell antitumor immunity. The six identified hub genes may serve as useful biomarkers for novel therapeutic targets.

Funder

Science and Technology Research Project of Henan Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3