Population structure and genetic diversity of the endangered fish black shinner Pseudopungtungia nigra (Cyprinidae) in Korea: a wild and restoration population

Author:

Kim Kang-Rae,Kwak Yeong-Ho,Sung Mu-Sung,Cho Seong-Jang,Bang In-Chul

Abstract

AbstractThe black shinner Pseudopungtungia nigra Mori, 1935 is an endangered fish endemic to Korea. It lives in the narrow basin of the Geumgang River, Mangyeonggang River, and Ungcheoncheon Stream, which flow into the West Sea of Korea. One population of P. nigra in Ungcheoncheon Stream has been locally exterminated once; it is now inhabiting the upper reaches of the dam through a restoration program. Efforts to identify and understand the genetic structure of these populations are important for conservation planning. Here, we analyzed genetic diversity using 21 microsatellite markers for 9 populations. The mean number of alleles ranged from 4.4 to 8.1, mean allelic richness ranged from 4.6 to 7.8, mean observed heterozygosity ranged from 0.519 to 0.702, and mean expected heterozygosity ranged from 0.540 to 0.763. All groups had recent and historical bottlenecks (P < 0.05, M-ratio < 0.68). Three groups [YD (2019), OC and UC] had significant inbreeding index values, suggesting that they were engaged in inbreeding. We observed a moderate level of genetic differentiation between MG and the rest of the population (FST = 0.135 to 0.168, P < 0.05). The genetic structure exhibited a fitting constant K = 2, along with separation between MG and the remaining populations. With respect to genetic flow, YD (2019), OC, CG, and ND shifted to the UC population (0.263 to 0.278). The genetic flow of each population was transferred only within the population; there was no gene flow among populations, except for the Ungcheoncheon Stream population. This study shows that the Ungcheoncheon Stream population needs conservation efforts to increase its genetic diversity, and the Geumgang River populations needs a conservation plan that considers the possibility of conservation and evolution through gene exchange among the populations.

Funder

Soonchunhyang University

Hankooktire & Technology Co., Ltd

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3