Numerical investigation of a squeezing flow between concentric cylinders under the variable magnetic field of intensity

Author:

Shabnam ,Mei Sun,Khan Muhammad Sohail,Mahmoud Omar,Galal Ahmed M.

Abstract

AbstractThe ongoing research aims to examine the mass and heat transmission phenomena of squeezing flow between two concentric cylinders under the effect of heat sources and magnetic fields. The impacts of the Lorentz force on the behavior of the liquid flow are elucidated via a magnetic field incorporated in the momentum equation. Furthermore, within concentric cylinders, the expression $$Q = \frac{Q_0}{1-\beta t}$$ Q = Q 0 1 - β t has been employed as a source/sink. The proposed model of PDEs formulates the physical phenomena of time-dependent incompressible two-dimensional squeezing flow via modified Navier-Stokes equation, energy equation, and mass transfer equation, and variable magnetic field. The proposed model involved a highly nonlinear system of PDEs, which has been reduced into a system of ODEs via Lie group of similarity transformation and subsequently solved numerically in MATLAB by Parametric Continuation Method. The direct impact of the squeezing parameter on the profile of temperature and concentration has been observed. The results shown that an increment in the heat source indicates a decline in the liquid temperature profile, that an increment in the heat source indicates a decline in the liquid temperature profile. An increment in the heat source indicates a decline in the liquid temperature prof. At the same time, an inverse relationship is observed for the concentration profile. Therefore, we have witnessed a significant increase in the velocity profiles of the flow, mainly as a result of the heat absorption coefficient. In addition, the declining effect of the Soret number on the concentration profile is noticed. It has been found that it enhanced the entropy generation rate for Pr, $$\Omega$$ Ω , and Ec, while an opposite impact has been noticed at the Bejan number. The numerical outcomes of the proposed model that explain fluid flow characteristics and fluid flow characteristics are quantitatively elucidated by tables and displayed graphically. The comparison of two numerical results in the cases are found to be in good agreement, as shown in Tables.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3