Author:
Orita Ryo,Nagano Yukio,Kawamura Yoshio,Kimura Kei,Kobayashi Genta
Abstract
AbstractThe razor clam Sinonovacula constricta is a commercially important bivalve in Japan. The current distribution of this species in Japan is limited to Ariake Bay, where the fishery stock is declining. It is necessary to understand the genetic population structure of this species in order to restore the fishery stock while preserving the genetic diversity of the clam. Here, we report for the first time the genetic population structure of S. constricta in Ariake Bay, Japan. Paired-end restriction site-associated DNA sequencing (RAD-Seq) analyzed samples of S. constricta collected from seven mudflats located along Ariake Bay. Two different genetic populations exist in Ariake Bay, one inhabiting wild habitats and the other inhabiting the transplanted area of artificial seedlings. Our results suggest that genetic differentiation occurred between these two populations (Fst value = 0.052), and a high level of genetic differentiation is maintained between the two groups. In the future, monitoring the interbreeding status of the two genetically distinct populations and the genetic differentiation within each population is important for conserving the genetic diversity of S. constricta in Japan.
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Fushimi, H. Production of juvenile marine finfish for stock enhancement in Japan. Aquaculture 200, 33–53. https://doi.org/10.1016/S0044-8486(01)00693-7 (2001).
2. Masuda, R. & Tsukamoto, K. Stock enhancement in Japan: review and perspective. Bull. Mar. Sci. 62, 337–358. https://www.ingentaconnect.com/content/umrsmas/bullmar/1998/00000062/00000002/art00005 (1998).
3. Sekino, M., Saitoh, K., Yamada, T., Hara, M. & Yamashita, Y. Genetic tagging of released Japanese flounder (Paralichthys olivaceus) based on polymorphic DNA markers. Aquaculture 244, 49–61. https://doi.org/10.1016/j.aquaculture.2004.11.006 (2005).
4. Arnold, W. S. Bivalve enhancement and restoration strategies in Florida, USA. Hydrobiologia 465, 7–19. https://doi.org/10.1023/A:1014596909319 (2001).
5. Castell, L. L., Naviti, W. & Nguyen, F. Detectability of cryptic juvenile Trochus niloticus Linnaeus in stock enhancement experiments. Aquaculture 144, 91–101. https://doi.org/10.1016/S0044-8486(96)01320-8 (1996).
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献