Author:
Huang Zengfa,Xiao Jianwei,Xie Yuanliang,Hu Yun,Zhang Shutong,Li Xiang,Wang Zheng,Li Zuoqin,Wang Xiang
Abstract
AbstractThis study sought to evaluate the association of breast arterial calcification (BAC) on breast screening mammography with the Coronary Artery Disease-Reporting and Data System (CAD-RADS) based on Deep Learning-coronary computed tomography angiography (CCTA). This prospective single institution study included asymptomatic women over 40 who underwent CCTA and breast cancer screening mammography between July 2018 and April 2019. CAD-RADS was scored based on Deep Learning (DL). Mammograms were assessed visually for the presence of BAC. A total of 213 patients were included in the analysis. In comparison to the low CAD-RADS (CAD-RADS < 3) group, the high CAD-RADS (CAD-RADS ≥ 3) group, more often had a history of hypertension (P = 0.036), diabetes (P = 0.017), and chronic kidney disease (P = 0.006). They also had a significantly higher level of LDL-C (P = 0.024), while HDL-C was lower than in the low CAD-RADS group (P = 0.003). BAC was also significantly higher in the high CAD-RADS group (P = 0.002). In multivariate analysis, the presence of BAC [odd ratio (OR) 10.22, 95% CI 2.86–36.49, P < 0.001] maintained a significant associations with CAD-RADS after adjustment by meaningful variable. The same tendency was also found after adjustment by all covariates. There was a significant correlation between the severities of CAD detected by DL based CCTA and BAC in women undergoing breast screening mammography. BAC may be used as an additional diagnostic tool to predict the severity of CAD in this population.
Funder
Natural Science Foundation of Hubei Province
Publisher
Springer Science and Business Media LLC
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献