Abstract
AbstractIdentifying networks with similar characteristics in a given ensemble, or detecting pattern discontinuities in a temporal sequence of networks, are two examples of tasks that require an effective metric capable of quantifying network (dis)similarity. Here we propose a method based on a global portrait of graph properties built by processing local nodes features. More precisely, a set of dissimilarity measures is defined by elaborating the distributions, over the network, of a few egonet features, namely the degree, the clustering coefficient, and the egonet persistence. The method, which does not require the alignment of the two networks being compared, exploits the statistics of the three features to define one- or multi-dimensional distribution functions, which are then compared to define a distance between the networks. The effectiveness of the method is evaluated using a standard classification test, i.e., recognizing the graphs originating from the same synthetic model. Overall, the proposed distances have performances comparable to the best state-of-the-art techniques (graphlet-based methods) with similar computational requirements. Given its simplicity and flexibility, the method is proposed as a viable approach for network comparison tasks.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献