Sulfur metabolism in subtropical marine mangrove sediments fundamentally differs from other habitats as revealed by SMDB

Author:

Mo Shuming,Yan Bing,Gao Tingwei,Li Jinhui,Kashif Muhammad,Song Jingjing,Bai Lirong,Yu Dahui,Liao Jianping,Jiang Chengjian

Abstract

AbstractShotgun metagenome sequencing provides the opportunity to recover underexplored rare populations and identify difficult-to-elucidate biochemical pathways. However, information on sulfur genes, including their sequences, is scattered in public databases. Here, we introduce SMDB (https://smdb.gxu.edu.cn/)—a manually curated database of sulfur genes based on an in-depth review of the scientific literature and orthology database. The SMDB contained a total of 175 genes and covered 11 sulfur metabolism processes with 395,737 representative sequences affiliated with 110 phyla and 2340 genera of bacteria/archaea. The SMDB was applied to characterize the sulfur cycle from five habitats and compared the microbial diversity of mangrove sediments with that of other habitats. The structure and composition of microorganism communities and sulfur genes were significantly different among the five habitats. Our results show that microorganism alpha diversity in mangrove sediments was significantly higher than in other habitats. Genes involved in dissimilatory sulfate reduction were abundant in subtropical marine mangroves and deep-sea sediments. The neutral community model results showed that microbial dispersal was higher in the marine mangrove ecosystem than in others habitats. The Flavilitoribacter of sulfur-metabolizing microorganism becomes a reliable biomarker in the five habitats. SMDB will assist researchers to analyze genes of sulfur cycle from the metagenomic efficiently.

Funder

Funding Project of Chinese Central Government Guiding to the Guangxi Local Science and Technology Development

Natural Science Fund for Distinguished Young Scholars of Guangxi Zhuang Autonomous Region of China

Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University

Project of State Key Laboratory of Radiation Medicine and Protection, Soochow University

Basic Research Fund of Guangxi Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3