Chemical insights into the atmospheric oxidation of thiophene by hydroperoxyl radical

Author:

Sharifi Maryam Seyed,Douroudgari Hamed,Vahedpour Morteza

Abstract

AbstractThe reaction mechanisms and kinetics of thiophene oxidation reactions initiated by hydroperoxyl radical, and decomposition of the related intermediates and complexes, have been considered herein by using high-level DFT and ab initio calculations. The main energetic parameters of all stationary points of the suggested potential energy surfaces have been computed at the BD(T) and CCSD(T) methods, based on the geometries optimized at the B3LYP/6-311 + g(d,p) level of theory. Rate constants of bimolecular reactions (high-pressure limit rate constants) at temperatures from 300 to 3000 K for the first steps of the title reaction have been obtained through the conventional transition state theory (TST), while the pressure dependent rate constants and the rate constants of the second and other steps have been calculated employing the Rice–Ramsperger–Kassel–Marcus/Master equation (RRKM/ME). The results show that the rate constants of addition to α and β carbons have positive temperature dependence and negative pressure dependence. It is found that the additions of HO2 to the α and β carbons of thiophene in the initial steps of the title reaction are the most favored pathways. Also, the addition to the sulfur atom has a minor contribution. But, all efforts for simulating hydrogen abstraction reactions have been unsuccessful. In this complex oxidation reaction, about 12 different products are obtained, including important isomers such as thiophene-epoxide, thiophene-ol, thiophene-oxide, oxathiane, and thiophenone. The calculated total rate constants for generation of all minimum stationary points show that the addition reactions to the α and β carbons are the fastest among all at temperatures below 1000 K, while the proposed multi-step parallel reactions are more competitive at temperatures above 1200 K. Furthermore, important inter-and intra-molecular interactions for some species have been investigated by two well-known quantum chemistry method, the NBO and AIM analyses. Thermochemical properties such as free energy, enthalpy, internal energy, and entropy for thiophene and hydroperoxyl radical and related species in the simulated reactions have been predicted using a combination of the B3LYP and BD(T) methods.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3