Synergistic antibacterial effect of copper and silver nanoparticles and their mechanism of action

Author:

Vasiliev Grigory,Kubo Anna-Liisa,Vija Heiki,Kahru Anne,Bondar Denys,Karpichev Yevgen,Bondarenko Olesja

Abstract

AbstractBacterial infections are one of the leading causes of death worldwide. In the case of topical bacterial infections such as wound infections, silver (Ag) has historically been one of the most widely used antibacterials. However, scientific publications have demonstrated the adverse effects of silver on human cells, ecotoxicity and insufficient antibacterial effect for the complete elimination of bacterial infections. The use of Ag in the form of nanoparticles (NPs, 1–100 nm) allows to control the release of antibacterial Ag ions but is still not sufficient to eliminate infection and avoid cytotoxicity. In this study, we tested the potency of differently functionalized copper oxide (CuO) NPs to enhance the antibacterial properties of Ag NPs. The antibacterial effect of the mixture of CuO NPs (CuO, CuO–NH2 and CuO–COOH NPs) with Ag NPs (uncoated and coated) was studied. CuO and Ag NP combinations were more efficient than Cu or Ag (NPs) alone against a wide range of bacteria, including antibiotic-resistant strains such as gram-negative Escherichia coli and Pseudomonas aeruginosa as well as gram-positive Staphylococcus aureus, Enterococcus faecalis and Streptococcus dysgalactiae. We showed that positively charged CuO NPs enhanced the antibacterial effect of Ag NPs up to 6 times. Notably, compared to the synergy of CuO and Ag NPs, the synergy of respective metal ions was low, suggesting that NP surface is required for the enhanced antibacterial effect. We also studied the mechanisms of synergy and showed that the production of Cu+ ions, faster dissolution of Ag+ from Ag NPs and lower binding of Ag+ by proteins of the incubation media in the presence of Cu2+ were the main mechanisms of the synergy. In summary, CuO and Ag NP combinations allowed increasing the antibacterial effect up to 6 times. Thus, using CuO and Ag NP combinations enables to retain excellent antibacterial effects due to Ag and synergy and enhances beneficial effects, since Cu is a vital microelement for human cells. Thus, we suggest using combinations of Ag and CuO NPs in antibacterial materials, such as wound care products, to increase the antibacterial effect of Ag, improve safety and prevent and cure topical bacterial infections.

Funder

EIC Accelerator grant

Estonian Research Council grant

grant from Development Fund of National Institute of Chemical Physics and Biophysics

Grant from Estonian Research Council

European Regional Development Fund

Grant from Estonian Research Agency

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3