Author:
Lamontagne-Caron Rémi,Desrosiers Patrick,Potvin Olivier,Doyon Nicolas,Duchesne Simon
Abstract
AbstractIdentifying early signs of neurodegeneration due to Alzheimer’s disease (AD) is a necessary first step towards preventing cognitive decline. Individual cortical thickness measures, available after processing anatomical magnetic resonance imaging (MRI), are sensitive markers of neurodegeneration. However, normal aging cortical decline and high inter-individual variability complicate the comparison and statistical determination of the impact of AD-related neurodegeneration on trajectories. In this paper, we computed trajectories in a 2D representation of a 62-dimensional manifold of individual cortical thickness measures. To compute this representation, we used a novel, nonlinear dimension reduction algorithm called Uniform Manifold Approximation and Projection (UMAP). We trained two embeddings, one on cortical thickness measurements of 6237 cognitively healthy participants aged 18–100 years old and the other on 233 mild cognitively impaired (MCI) and AD participants from the longitudinal database, the Alzheimer’s Disease Neuroimaging Initiative database (ADNI). Each participant had multiple visits ($$n \ge 2$$
n
≥
2
), one year apart. The first embedding’s principal axis was shown to be positively associated ($$r = 0.65$$
r
=
0.65
) with participants’ age. Data from ADNI is projected into these 2D spaces. After clustering the data, average trajectories between clusters were shown to be significantly different between MCI and AD subjects. Moreover, some clusters and trajectories between clusters were more prone to host AD subjects. This study was able to differentiate AD and MCI subjects based on their trajectory in a 2D space with an AUC of 0.80 with 10-fold cross-validation.
Funder
Canadian Institutes of Health Research
Canada First Research Excellence Fund
Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献