Genome-scale community modelling elucidates the metabolic interaction in Indian type-2 diabetic gut microbiota

Author:

Beura Satyajit,Kundu Pritam,Das Amit Kumar,Ghosh Amit

Abstract

AbstractType-2 diabetes (T2D) is a rapidly growing multifactorial metabolic disorder that induces the onset of various diseases in the human body. The compositional and metabolic shift of the gut microbiota is a crucial factor behind T2D. Hence, gaining insight into the metabolic profile of the gut microbiota is essential for revealing their role in regulating the metabolism of T2D patients. Here, we have focused on the genome-scale community metabolic model reconstruction of crucial T2D-associated gut microbes. The model-based analysis of biochemical flux in T2D and healthy gut conditions showed distinct biochemical signatures and diverse metabolic interactions in the microbial community. The metabolic interactions encompass cross-feeding of short-chain fatty acids, amino acids, and vitamins among individual microbes within the community. In T2D conditions, a reduction in the metabolic flux of acetate, butyrate, vitamin B5, and bicarbonate was observed in the microbial community model, which can impact carbohydrate metabolism. The decline in butyrate levels is correlated with both insulin resistance and diminished glucose metabolism in T2D patients. Compared to the healthy gut, an overall reduction in glucose consumption and SCFA production flux was estimated in the T2D gut environment. Moreover, the decreased consumption profiles of branch chain amino acids (BCAAs) and aromatic amino acids (AAAs) in the T2D gut microbiota can be a distinct biomarker for T2D. Hence, the flux-level analysis of the microbial community model can provide insights into the metabolic reprogramming in diabetic gut microbiomes, which may be helpful in personalized therapeutics and diet design against T2D.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3