Spin-splitting effects on the interband optical conductivity and activity of phosphorene

Author:

Phuong Le Thi Thu,Phong Tran C.,Yarmohammadi Mohsen

Abstract

AbstractBeing able to tune the anisotropic interband transitions in phosphorene at finite temperature offers an enormous amount of possibilities in finding new insights in the optoelectronic community. To contribute to this goal we propose a Zeeman spin-splitting field aiming at absorbing various frequencies of the incident light. Employing the tight-binding Hamiltonian to describe the carrier dynamics and the Kubo formalism to formulate the orientation-dependent interband optical conductivity (IOC) and optical activity of phosphorene we investigate the absorption and scattering mechanisms in phosphorene depending on the Zeeman field strength and optical energy parameters. The optical activity features are characterized by exploring the eccentricity and shift phase of reflected and transmitted electromagnetic waves of the incident light. Different electronic phases in the absence and presence of Zeeman field ultimate different types of interband transitions of which in all cases the IOC along the armchair direction is larger than the zigzag one. However, we observed an irregular (regular) process for IOC with the Zeeman field along the armchair (zigzag) direction, resulting in irregular (regular) absorption and scattering mechanisms. Additionally, a little to no effects for temperature-dependent IOC are provided with the Zeeman field in undoped phosphorene. Further, almost linearly and elliptically polarizations are reported for the transmitted and reflected waves, respectively, indicating that the phosphorene is almost transparent. The emergence of Zeeman spin-splitting effects in optoelectronic properties of phosphorene is pleasant to make it a great potential candidate for logic applications.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3