Quantizing reconstruction losses for improving weather data synthesis

Author:

Szwarcman Daniela,Guevara Jorge,Macedo Maysa M. G.,Zadrozny Bianca,Watson Campbell,Rosa Laura,Oliveira Dario A. B.

Abstract

AbstractThe stochastic synthesis of extreme, rare climate scenarios is vital for risk and resilience models aware of climate change, directly impacting society in different sectors. However, creating high-quality variations of under-represented samples remains a challenge for several generative models. This paper investigates quantizing reconstruction losses for helping variational autoencoders (VAE) better synthesize extreme weather fields from conventional historical training sets. Building on the classical VAE formulation using reconstruction and latent space regularization losses, we propose various histogram-based penalties to the reconstruction loss that explicitly reinforces the model to synthesize under-represented values better. We evaluate our work using precipitation weather fields, where models usually strive to synthesize well extreme precipitation samples. We demonstrate that bringing histogram awareness to the reconstruction loss improves standard VAE performance substantially, especially for extreme weather events.

Publisher

Springer Science and Business Media LLC

Reference35 articles.

1. National Academies of Sciences, Engineering and Medicine. Attribution of Extreme Weather Events in the Context of Climate Change (The National Academies Press, 2016).

2. Seneviratne, S. et al. Changes in Climate Extremes and their Impacts on the Natural Physical Environment 109–230 (Cambridge University Press, 2012).

3. Verdin, A., Rajagopalan, B., Kleiber, W., Podestá, G. & Bert, F. A conditional stochastic weather generator for seasonal to multi-decadal simulations. J. Hydrol. 556, 835–846 (2018).

4. Allard, D., Ailliot, P., Monbet, V. & Naveau, P. Stochastic weather generators: An overview of weather type models. J. Soc. Fr. Stat. 156, 101–113 (2015).

5. Apipattanavis, S., Podestá, G., Rajagopalan, B. & Katz, R. W. A semiparametric multivariate and multisite weather generator. Water Resour. Res.https://doi.org/10.1029/2006WR005714 (2007).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3