Electron tomography unravels new insights into fiber cell wall nanostructure; exploring 3D macromolecular biopolymeric nano-architecture of spruce fiber secondary walls

Author:

Fernando Dinesh,Kowalczyk Michael,Guindos Pablo,Auer Manfred,Daniel Geoffrey

Abstract

AbstractLignocellulose biomass has a tremendous potential as renewable biomaterials for fostering the “bio-based society” and circular bioeconomy paradigm. It requires efficient use and breakdown of fiber cell walls containing mainly cellulose, hemicellulose and lignin biopolymers. Despite their great importance, there is an extensive debate on the true structure of fiber walls and knowledge on the macromolecular nano-organization is limited and remains elusive in 3D. We employed dual-axis electron tomography that allows visualization of previously unseen 3D macromolecular organization/biopolymeric nano-architecture of the secondary S2 layer of Norway spruce fiber wall. Unprecedented 3D nano-structural details with novel insights into cellulose microfibrils (~ 2 nm diameter), macrofibrils, nano-pore network and cell wall chemistry (volume %) across the S2 were explored and quantified including simulation of structure related permeability. Matrix polymer association with cellulose varied between microfibrils and macrofibrils with lignin directly associated with MFs. Simulated bio-nano-mechanical properties revealed stress distribution within the S2 and showed similar properties between the idealized 3D model and the native S2 (actual tomogram). Present work has great potential for significant advancements in lignocellulose research on nano-scale understanding of cell wall assembly/disassembly processes leading to more efficient industrial processes of functionalization, valorization and target modification technologies.

Funder

Swedish Research Council for Sustainable Development

Swedish University of Agricultural Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3