Experimental study on fractal dimension of energy dissipation and crack growth in saturated tuff at different strain rates

Author:

Wang Hao,Zong Qi,Lu Ziyi,Wang Haibo

Abstract

AbstractIn order to investigate the effects of strain rate and water saturation on the energy dissipation and crack growth of tuff, uniaxial compression tests were carried out on dry and water saturated tuff with different strain rates using an electro-hydraulic servo press and a 50 mm diameter split Hopkinson pressure rod (SHPB) device. High-speed camera and Image J image analysis software were used to obtain the crack growth process of the specimen under impact load, and fractal dimension was introduced to quantitatively study the crack growth degree. The results show that more than 90% of the energy is stored in the specimen as elastic energy when it reaches the peak stress under static load. The average total energy of water-saturated specimens is 67.55% of that of dry specimens. The average energy dissipation density of water-saturated specimens under 0.3 MPa, 0.4 MPa and 0.5 MPa air pressure is 0.79, 0.91 and 0.92 times of that of dry specimens, respectively. Water-saturated specimens will deteriorate and thus reduce their energy storage and energy absorption effects. The reflected energy, transmitted energy, absorbed energy and incident energy are linear, logarithmic and linear functions, respectively, and the energy absorptivity and specific energy absorptivity of water-saturated specimens are lower than those of dry specimens. Due to the existence of “stefan” effect, the increase of energy dissipation density of water-saturated specimen at high strain rate is greater than that of dry specimen. The mean fractal dimension of water-saturated specimens under 0.3 MPa, 0.4 MPa and 0.5 MPa is 1.09, 1.05 and 1.16 times that of dry specimens. At the same strain rate, the number and width of cracks in water-saturated specimens are larger than that in dry specimens. Water-saturated behavior reduces the energy absorption capacity of tuff, increases the fractal dimension of crack growth, and significantly reduces the resistance of water-saturated rock to external loads.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3