Impact of the female and hermaphrodite forms of Opuntia robusta on the plant defence hypothesis

Author:

Janczur Mariusz KrzysztofORCID,González-Camarena Emilio,León-Solano Hector JavierORCID,Sandoval-Molina Mario AlbertoORCID,Jenner Bartosz

Abstract

AbstractThe optimal defence hypothesis predicts that increased plant defence capabilities, lower levels of damage, and lower investment in vegetative biomass will occur more frequently in sexual forms with higher resource-demanding tissue production and/or younger plant parts. We aimed to examine the effects of sexual form, cladode, and flower age on growth rate, herbivore damage, and 4-hydroxybenzoic acid (4-HBA), chlorogenic acid, and quercetin (QUE) concentrations in Opuntia robusta plants in central Mexico. Our findings demonstrated that hermaphrodite flowers showed faster growth and lesser damage than female flowers. The effect of cladode sexual forms on 4-HBA and QUE occurrence was consistent with the predictions of the optimal defence hypothesis. However, chlorogenic acid occurrences were not significantly affected by sexual forms. Old cladodes exhibited higher QUE and 4-HBA occurrences than young cladodes, and hermaphrodites exhibited higher 4-HBA concentrations than females. Resource allocation for reproduction and secondary metabolite production, and growth was higher and lower, respectively, in females, compared to hermaphrodites, indicating a trade-off between investment in reproduction, growth, and secondary metabolite production. Secondary metabolite concentrations in O. robusta plants were not negatively correlated with herbivore damage, and the two traits were not accurate predictors of plant reproductive output.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3