Spatial–temporal evolution and spatial spillover of the green efficiency of urban construction land in the Yangtze River Economic Belt, China

Author:

Zhou Jialiang

Abstract

AbstractThere are urgent ecological and environmental problems in the process of the utilization of urban construction land, promoting green utilization of construction land is conducive to urban sustainable development and high-quality economic development. Based on the panel data of 108 prefecture-level and above cities in the Yangtze River Economic Belt, China from 2003 to 2017, this paper uses the super-efficiency SBM model to measure the green efficiency of urban construction land (GEUCL), analyzes its spatial–temporal evolution characteristics, and constructs the spatial autoregressive model to study its spatial spillover effects from the perspective of urban hierarchy. It is found that, in terms of temporal variation, the average efficiency value shows a fluctuating upward trend during the study period, rising from 0.27 in 2003 to 0.39 in 2017, the cumulative growth rate is 44.44%, with an average annual growth rate of 3.14%. In terms of spatial distribution characteristics, during the study period, the number of medium-efficiency and high-efficiency cities increases significantly, while the number of low-efficiency cities decreases sharply; high-efficiency cities always present scattered distribution, while medium-efficiency cities change from scattered distribution to agglomeration distribution. In addition, GEUCL has significantly positive spatial spillover effects between neighboring cities of different grades and between neighboring cities of the same grade, among them, the increase of GEUCL in higher-grade cities has significantly positive spatial spillover effects on that in adjacent lower-grade cities; the increase of GEUCL in lower-grade cities has significantly positive spatial spillover effects on that in neighboring higher-grade cities; GEUCL has significantly positive spatial spillover effects between neighboring cities of the same grade.

Funder

Fujian Jiangxia University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3