Author:
Okuma Gaku,Maeda Kei,Yoshida Satoshi,Takeuchi Akihisa,Wakai Fumihiro
Abstract
AbstractThe characterization of subsurface cracks induced by indentation is a challenge for understanding contact damage, impact, wear, erosion, and abrasion of brittle materials, because the crack pattern observable on the surface is only a part of the total crack system. Here we applied synchrotron X-ray multiscale tomography to observe the morphology of subsurface cracks produced by Vickers indentation in a novel CaO–Al2O3–SiO2 glass-ceramic with plate-like crystals forming a house-of-cards microstructure. It revealed a diverse type of crack systems around the semispherical microcrack zone beneath the indent, including a new mode II inclined lateral crack driven by the maximum shear stress. Tomography images provided knowledge on how the heterogeneous microstructure affected the toughening processes such as crack deflection, crack bridging, and microcracking.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献