DC current–voltage and impedance spectroscopy characterization of nCdS/pZnTe HJ

Author:

Lungu I.,Patru R. E.,Galca A. C.,Pintilie L.,Potlog T.

Abstract

AbstractThis paper describes the electrical and dielectric behavior of the nCdS/pZnTe HJ by current–voltage, capacitance–voltage characteristics, and impedance spectroscopy in a temperature interval 220–350 K. A microcrystalline p-ZnTe layer and n-CdS were grown on glass/ZnO substrate by closed space sublimation method. As frontal contact to CdS, the transparent ZnO and as a back contact to ZnTe, silver conductive paste (Ag) treated at 50 °C in vacuum were used. The current–voltage results of nCdS/pZnTe HJ show a rectifying behavior. The junction ideality factor, barrier height, and series resistance values were extracted from the rectifying curves at different temperatures. The built-in voltage, carrier concentration and depletion width were obtained from the capacitance–voltage measurements. Analysis of the J–V–T and C–V–T characteristics shows that the thermionic emission and recombination current flow mechanisms dominate in the nCdS/pZnTe HJ. The dielectric study reveals that the experimental values of the AC conductivity, dielectric constant, dielectric loss, the imaginary part of the electric modulus are found to be very sensitive to frequency and temperature. The dielectric constant and dielectric loss are observed to be high at the low frequency region. The increase in the values of electric modulus with the frequency implies an increase in the interfacial polarization at the interface of nCdS/pZnTe HJ. Jonscher’s universal power law shows that with increasing frequency, AC conductivity increased. The results conductivity show that the ionic conductivity and interfacial polarization are the main parameters affecting the dielectric properties of the device when the temperature changes.

Funder

Ministerul Educației, Culturii și Cercetării

European Cooperation in Science and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3