Integrated visual transformer and flash attention for lip-to-speech generation GAN

Author:

Yang Qiong,Bai Yuxuan,Liu Feng,Zhang Wei

Abstract

AbstractLip-to-Speech (LTS) generation is an emerging technology that is highly visible, widely supported, and rapidly evolving. LTS has a wide range of promising applications, including assisting speech impairment and improving speech interaction in virtual assistants and robots. However, the technique faces the following challenges: (1) Chinese lip-to-speech generation is poorly recognized. (2) The wide range of variation in lip-speaking is poorly aligned with lip movements. Addressing these challenges will contribute to advancing Lip-to-Speech (LTS) technology, enhancing the communication abilities, and improving the quality of life for individuals with disabilities. Currently, lip-to-speech generation techniques usually employ the GAN architecture but suffer from the following problems: The primary issue lies in the insufficient joint modeling of local and global lip movements, resulting in visual ambiguities and inadequate image representations. To solve these problems, we design Flash Attention GAN (FA-GAN) with the following features: (1) Vision and audio are separately coded, and lip motion is jointly modelled to improve speech recognition accuracy. (2) A multilevel Swin-transformer is introduced to improve image representation. (3) A hierarchical iterative generator is introduced to improve speech generation. (4) A flash attention mechanism is introduced to improve computational efficiency. Many experiments have indicated that FA-GAN can recognize Chinese and English datasets better than existing architectures, especially the recognition error rate of Chinese, which is only 43.19%, the lowest among the same type.

Funder

Shaanxi Natural Science Youth Foundation

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Script Generation for Silent Speech in E-Learning;Advances in Educational Technologies and Instructional Design;2024-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3