A veracity dissemination consistency-based few-shot fake news detection framework by synergizing adversarial and contrastive self-supervised learning

Author:

Jin Weiqiang,Wang Ningwei,Tao Tao,Shi Bohang,Bi Haixia,Zhao Biao,Wu Hao,Duan Haibin,Yang GuangORCID

Abstract

AbstractWith the rapid growth of social media, fake news (rumors) are rampant online, seriously endangering the health of mainstream social consciousness. Fake news detection (FEND), as a machine learning solution for automatically identifying fake news on Internet, is increasingly gaining the attentions of academic community and researchers. Recently, the mainstream FEND approaches relying on deep learning primarily involves fully supervised fine-tuning paradigms based on pre-trained language models (PLMs), relying on large annotated datasets. In many real scenarios, obtaining high-quality annotated corpora are time-consuming, expertise-required, labor-intensive, and expensive, which presents challenges in obtaining a competitive automatic rumor detection system. Therefore, developing and enhancing FEND towards data-scarce scenarios is becoming increasingly essential. In this work, inspired by the superiority of semi-/self- supervised learning, we propose a novel few-shot rumor detection framework based on semi-supervised adversarial learning and self-supervised contrastive learning, named Detection Yet See Few (DetectYSF). DetectYSF synergizes contrastive self-supervised learning and adversarial semi-supervised learning to achieve accurate and efficient FEND capabilities with limited supervised data. DetectYSF uses Transformer-based PLMs (e.g., BERT, RoBERTa) as its backbone and employs a Masked LM-based pseudo prompt learning paradigm for model tuning (prompt-tuning). Specifically, during DetectYSF training, the enhancement measures for DetectYSF are as follows: (1) We design a simple but efficient self-supervised contrastive learning strategy to optimize sentence-level semantic embedding representations obtained from PLMs; (2) We construct a Generation Adversarial Network (GAN), utilizing random noises and negative fake news samples as inputs, and employing Multi-Layer Perceptrons (MLPs) and an extra independent PLM encoder to generate abundant adversarial embeddings. Then, incorporated with the adversarial embeddings, we utilize semi-supervised adversarial learning to further optimize the output embeddings of DetectYSF during its prompt-tuning procedure. From the news veracity dissemination perspective, we found that the authenticity of the news shared by these collectives tends to remain consistent, either mostly genuine or predominantly fake, a theory we refer to as “news veracity dissemination consistency”. By employing an adjacent sub-graph feature aggregation algorithm, we infuse the authenticity characteristics from neighboring news nodes of the constructed veracity dissemination network during DetectYSF inference. It integrates the external supervisory signals from “news veracity dissemination consistency” to further refine the news authenticity detection results of PLM prompt-tuning, thereby enhancing the accuracy of fake news detection. Furthermore, extensive baseline comparisons and ablated experiments on three widely-used benchmarks demonstrate the effectiveness and superiority of DetectYSF for few-shot fake new detection under low-resource scenarios.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3