Human mobility networks manifest dissimilar resilience characteristics at macroscopic, substructure, and microscopic scales

Author:

Hsu Chia-Wei,Ho Matthew Alexander,Mostafavi Ali

Abstract

AbstractHuman mobility networks can reveal insights into resilience phenomena, such as population response to, impacts on, and recovery from crises. The majority of human mobility network resilience characterizations, however, focus mainly on macroscopic network properties; little is known about variation in measured resilience characteristics (i.e., the extent of impact and recovery duration) across macroscopic, substructure (motif), and microscopic mobility scales. To address this gap, in this study, we examine the human mobility network in eight parishes in Louisiana (USA) impacted by the 2021 Hurricane Ida. We constructed human mobility networks using location-based data and examined three sets of measures: (1) macroscopic measures, such as network density, giant component size, and modularity; (2) substructure measures, such as motif distribution; and (3) microscopic mobility measures, such as the radius of gyration and average travel distance. To determine the extent of impact and duration of recovery, for each measure, we established the baseline values and examined the fluctuation of measures during the perturbation caused by Hurricane Ida. The results reveal the variation of impact extent and recovery duration obtained from different sets of measures at different scales. Macroscopic measures, such as giant components, tend to recover more quickly than substructure and microscopic measures. In fact, microscopic measures tend to recover more slowly than measures in other scales. These findings suggest that resilience characteristics in human mobility networks are scale-variant, and thus, a single measure at a particular scale may not be representative of the perturbation impacts and recovery duration in the network as a whole. These results spotlight the need to use measures at different scales to properly characterize resilience in human mobility networks.

Funder

National Science Foundation

Texas A&M University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3