Soil and foliar application of rock dust as natural control agent for two-spotted spider mites on tomato plants

Author:

Faraone Nicoletta,Evans Rodger,LeBlanc Julia,Hillier Neil Kirk

Abstract

AbstractMineral-based products represent a valid alternative to synthetic pesticides in integrated pest management. We investigated the effects of a novel granite dust product as an agent for controlling two-spotted spider mites, Tetranychus urticae Koch (Acari: Tetranychidae), on tomato plants (Solanum lycopersicum L.). Two-choice tests for repellency and repulsiveness, and no-choice bioassays with different type of applications (soil, foliar, and soil–foliar) were used in order to evaluate performance and action of the product. Evaluation of epidermal micromorphology and mesophyll structure of treated plants and elemental analyses of leaves were performed. In repulsiveness experiments, almost all dust treatments significantly inhibited mites from migrating to and/or settling on the treated leaf. In repellency experiments, foliar and soil dust treatments were not significantly different from control. Significant mortality was observed for all dust treatments in two-choice and in no-choice bioassays, suggesting mites are susceptible to rock dust by contact, and by indirect interaction through the feeding on plants subjected to soil application of rock dust. Leaf epidermal micromorphology and mesophyll structure of treated plants showed structural variation due to mineral accumulation, which was also confirmed by elemental analyses of leaves. These results demonstrate for the first time that granite rock dust interacts with two-spotted spider mites by modifying pest behavior and via acaricidal action, providing more insights in understanding the mechanism of this novel natural product as pest management tool.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference57 articles.

1. Health Canada—Screening Assessment for the Challenge (CAS RN 14808-60-7, 14464-46-1). https://www.ec.gc.ca (2013).

2. Korunić, Z., Liška, A., Lucić, P., Hamel, D. & Rozman, V. Evaluation of diatomaceous earth formulations enhanced with natural products against stored product insects. J. Stored Prod. Res. 86, 101565 (2020).

3. Laing, D., Gatarayiha, M. & Adandonon, A. Silicon use for pest control in agriculture: A review. Proc. S. Afr. Sugarcane Technol. Assoc. 80, 278–286 (2006).

4. Debnath, N., Das, S., Patra, P., Mitra, S. & Goswami, A. Toxicological evaluation of entomotoxic silica nanoparticle. Toxicol. Environ. Chem. 94, 944–951 (2012).

5. Sabbour, M. M. Entomotoxicity assay of two nanoparticle materials 1-(Al2O3 and TiO2) against Sitophilus oryzae under laboratory and store conditions in Egypt. J. Novel Appl. Sci. 1, 103–108 (2012).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3