Jitter noise modeling and its removal using recursive least squares in shape from focus systems

Author:

Mutahira Husna,Shin Vladimir,Park Unsang,Muhammad Mannan Saeed

Abstract

AbstractThree-dimensional shape recovery from the set of 2D images has many applications in computer vision and related fields. Passive techniques of 3D shape recovery utilize a single view point and one of these techniques is Shape from Focus or SFF. In SFF systems, a stack of images is taken with a single camera by manipulating its focus settings. During the image acquisition, the inter-frame distance or the sampling step size is predetermined and assumed constant. However, in a practical situation, this step size cannot remain constant due to mechanical vibrations of the translational stage, causing jitter. This jitter produces Jitter noise in the resulting focus curves. Jitter noise is invisible in every image, because all images in the stack are exposed to the same error in focus; thus, limiting the use of traditional noise removal techniques. This manuscript formulates a model of Jitter noise based on Quadratic function and the Taylor series. The proposed method, then, solves the jittering problem for SFF systems through recursive least squares (RLS) filtering. Different noise levels were considered during experiments performed on both real as well as simulated objects. A new metric measure is also proposed, referred to as depth distortion (DD), which calculates the number of pixels contributing to the RMSE in percentage. The proposed measure is used along with the RMSE and correlation, to compute and test the reconstructed shape quality. The results confirm the effectiveness of the proposed scheme.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3