Visibility forecast in Jiangsu province based on the GCN-GRU model

Author:

Chen Huansang,Xu Yihang,Gao Zhiqiu,Kang Jia,Jiang Yuncong,Li Zheng,Shen Huan

Abstract

AbstractLow visibility weather easily leads to traffic accidents, posing threats to human life and property. To accurately forecast visibility, we conduct an empirical study focusing on Jiangsu Province. Firstly, we collect the monitoring data from meteorological stations and environmental stations for 2017-2018. Secondly, we analyze the changes in visibility from both spatial and temporal perspectives. Next, the maximum Relevance Minimum Redundancy (mRMR) algorithm is employed to select factors affecting visibility, finding that humidity and $$PM_{2.5}$$ P M 2.5 concentrations are the primary factors. Finally, we propose GCN-GRU (Graph Convolutional Network and Gated Recurrent Unit) model for short-term visibility forecasting, which employs GCN to capture the interactions between stations and uses GRU to learn the interactions between times. Experimental results indicate that GCN-GRU outperforms the standalone GRU model and three machine learning models regarding 6-hour visibility forecasting. Compared to the best competitor, GCN-GRU achieves an average increase of 3.32% in Correlation Coefficient (CORR), a decrease of 17.52% in Root Mean Square Error (RMSE), a reduction of 26.62% in Mean Absolute Percentage Error (MAPE), and a decline of 16.53% in Mean Absolute Error (MAE).

Publisher

Springer Science and Business Media LLC

Reference29 articles.

1. Koschmieder, H. Theorie der horizontalen sichtweite. Beitrage zur Physik der freien Atmosphare 33–53 (1924).

2. Duntley, S. Q. The reduction of apparent contrast by the atmosphere. JOSA 38, 179–191. https://doi.org/10.1364/JOSA.38.000179 (1948).

3. Middleton, W. E. K. Vision through the atmosphere University of Toronto Press, (1952).

4. Liang, M. et al. A systematic review on the association between meteorological factors with traffic accident injury. Chinese J. Disease Control 24, 222–227 (2020).

5. Bai, Z., Cai, B., Dong, H. & Bian, H. Adverse health effects caused by dust haze: A review. Environ. Pollut. Cont. 28, 198–201 (2006).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3