Author:
Godwin Sean C.,Fast Mark D.,Kuparinen Anna,Medcalf Kate E.,Hutchings Jeffrey A.
Abstract
Abstract
Infectious diseases are key drivers of wildlife populations and agriculture production, but whether and how climate change will influence disease impacts remains controversial. One of the critical knowledge gaps that prevents resolution of this controversy is a lack of high-quality experimental data, especially in marine systems of significant ecological and economic consequence. Here, we performed a manipulative experiment in which we tested the temperature-dependent effects on Atlantic salmon (Salmo salar) of sea lice (Lepeophtheirus salmonis)—a parasite that can depress the productivity of wild-salmon populations and the profits of the salmon-farming industry. We explored sea-louse impacts on their hosts across a range of temperatures (10, 13, 16, 19, and 22 °C) and infestation levels (zero, ‘low’ (mean abundance ± SE = 1.6 ± 0.1 lice per fish), and ‘high’ infestation (6.8 ± 0.4 lice per fish)). We found that the effects of sea lice on the growth rate, condition, and survival of juvenile Atlantic salmon all worsen with increasing temperature. Our results provide a rare empirical example of how climate change may influence the impacts of marine disease in a key social-ecological system. These findings underscore the importance of considering climate-driven changes to disease impacts in wildlife conservation and agriculture.
Funder
Liber Ero
Atlantic Salmon Conservation Foundation
Atlantic Canada Opportunities Agency in association with the Atlantic Innovation Fund
Ocean Frontiers Institute
Natural Sciences and Engineering Research Council of Canada
Academy of Finland
European Research Council
Publisher
Springer Science and Business Media LLC
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献