Accelerated marsh erosion following the Deepwater Horizon oil spill confirmed, ameliorated by planting

Author:

Zengel Scott,Nixon Zachary,Weaver Jennifer,Rutherford Nicolle,Bernik Brittany M.,Michel Jacqueline

Abstract

AbstractMultiple studies have examined the effects of the Deepwater Horizon oil spill on coastal marsh shoreline erosion. Most studies have concluded that the spill increased shoreline erosion (linear retreat) in oiled marshes by ~ 100–200% for at least 2–3 years. However, two studies have called much of this prior research into question, due to potential study design flaws and confounding factors, primarily tropical cyclone influences and differential wave exposure between oiled (impact) and unoiled (reference) sites. Here we confirm that marsh erosion in our field experiment was substantially increased (112–233%) for 2 years in heavily oiled marsh after the spill, likely due to vegetation impacts and reduced soil shear strength attributed to the spill, rather than the influences of hurricanes or wave exposure variation. We discuss how our findings reinforce prior studies, including a wider-scale remote sensing analysis with similar study approach. We also show differences in the degree of erosion among oil spill cleanup treatments. Most importantly, we show that marsh restoration planting can drastically reduce oiled marsh erosion, and that the positive influences of planting can extend beyond the immediate impact of the spill.

Funder

National Oceanic and Atmospheric Administration

Department of Fisheries and Oceans Canada

Gulf of Mexico Research Initiative

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3