Author:
Singh Shardendu K.,Reddy Vangimalla R.,Devi Mura Jyostna,Timlin Dennis J.
Abstract
AbstractThe present study investigated the interactive effects of three environmental stress factors elevated CO2, temperature, and drought stress on soybean growth and yield. Experiments were conducted in the sunlit, controlled environment Soil–Plant–Atmosphere–Research chambers under two-level of irrigation (WW-well water and WS-water stress-35%WW) and CO2 (aCO2-ambient 400 µmol mol−1 and eCO2-elevated 800 µmol mol−1) and each at the three day/night temperature regimes of 24/18 °C (MLT-moderately low), 28/22 °C (OT-optimum), and 32/26 °C (MHT-moderately high). Results showed the greatest negative impact of WS on plant traits such as canopy photosynthesis (PCnet), total dry weight (TDwt), and seed yield. The decreases in these traits under WS ranged between 40 and 70% averaged across temperature regimes with a greater detrimental impact in plants grown under aCO2 than eCO2. The MHT had an increased PCnet, TDwt, and seed yield primarily under eCO2, with a greater increase under WW than WS conditions. The eCO2 stimulated PCnet, TDwt, and seed yield more under WS than WW. For instance, on average across T regimes, eCO2 stimulated around 25% and 90% dry mass under WW and WS, respectively, relative to aCO2. Overall, eCO2 appears to benefit soybean productivity, at least partially, under WS and the moderately warmer temperature of this study.
Funder
Agricultural Research Service
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. IPCC. Summary for policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Stocker, T.F. et al.) 29 (Cambridge University Press, 2013). http://www.climatechange2013.org/images/report/WG1AR5_SPM_FINAL.pdf.
2. Wang, Z., Reddy, V. R. & Quebedeaux, B. Growth and photosynthetic responses of soybean to short-term cold temperature. Environ. Exp. Bot. 37, 13–24. https://doi.org/10.1016/S0098-8472(96)01033-7 (1997).
3. Yamaguchi, N. et al. Method for selection of soybeans tolerant to seed cracking under chilling temperatures. Breed. Sci. 64, 103–108. https://doi.org/10.1270/jsbbs.64.103 (2014).
4. Siebers, M. H. et al. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress. Glob. Change Biol. 21, 3114–3125. https://doi.org/10.1111/gcb.12935 (2015).
5. Allison, I. et al. The Copenhagen Diagnosis, 2009: Updating the World on the Latest Climate Science (The University of New South Wales Climate Change Research Centre (CCRC), 2009).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献