Sedative drugs modulate the neuronal activity in the subthalamic nucleus of parkinsonian patients

Author:

Benady Amit,Zadik Sean,Eimerl Dan,Heymann Sami,Bergman Hagai,Israel Zvi,Raz Aeyal

Abstract

AbstractMicroelectrode recording (MER) is often used to identify electrode location which is critical for the success of deep brain stimulation (DBS) treatment of Parkinson’s disease. The usage of anesthesia and its’ impact on MER quality and electrode placement is controversial. We recorded neuronal activity at a single depth inside the Subthalamic Nucleus (STN) before, during, and after remifentanil infusion. The root mean square (RMS) of the 250–6000 Hz band-passed signal was used to evaluate the regional spiking activity, the power spectrum to evaluate the oscillatory activity and the coherence to evaluate synchrony between two microelectrodes. We compare those to new frequency domain (spectral) analysis of previously obtained data during propofol sedation. Results showed Remifentanil decreased the normalized RMS by 9% (P < 0.001), a smaller decrease compared to propofol. Regarding the beta range oscillatory activity, remifentanil depressed oscillations (drop from 25 to 5% of oscillatory electrodes), while propofol did not (increase from 33.3 to 41.7% of oscillatory electrodes). In the cases of simultaneously recorded oscillatory electrodes, propofol did not change the synchronization while remifentanil depressed it. In conclusion, remifentanil interferes with the identification of the dorsolateral oscillatory region, whereas propofol interferes with RMS identification of the STN borders. Thus, both have undesired effect during the MER procedure.Trial registration: NCT00355927 and NCT00588926.

Funder

Parkinson at the Hadassah (PATH) Committee of London, UK

United States-Israel Binational Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3