Adaptive photoperiod interpretation modulates phenological timing in Atlantic salmon

Author:

Oldham Tina,Oppedal Frode,Fjelldal Per Gunnar,Hansen Tom Johnny

Abstract

AbstractPhotoperiod, the portion of 24-h cycle during which an organism is exposed to illumination, is an important phenological cue in many animals. However, despite its influence on critical biological processes, there remain many unknowns regarding how variations in light intensity translate into perceived photoperiod. This experiment examined how light intensity variations affect perceived photoperiod in Atlantic salmon (Salmo salar) to determine whether photoperiod interpretation is, a) fixed such that anything above a minimum detection threshold is regarded as ‘illumination’, or b) adaptive and varies with recent light exposure. To do this we compared the frequency of smoltification and sexual maturation between groups of male parr which were exposed to one of eight light regimes on a 12:12 cycling regime (12-hour day/12-hour night). The eight regimes were divided into two treatments, four with ‘High’ daytime light intensity and four with ‘Low’ daytime light intensity. The ‘High' and ‘Low' intensity treatments were each sub-divided into four groups for which the subjective ‘night’ light intensity was 100%, 10%, 1% and 0% of the daytime light intensity, with four replicate tanks of each treatment. The results show that above a minimum detection threshold, Atlantic salmon have adaptive photoperiod interpretation which varies with recent light exposure, and that adaptive photoperiod interpretation modulates the timing of the parr-smolt transformation and sexual maturation. Further, we show that photoperiod interpretation varies between closely related families. Given the influence of phenological timing on species survival, our results reveal a critical role for integration of photoperiod interpretation in attempts to understand how geographically shifting thermal niches due to climate change will affect future populations.

Funder

Centre for Aquaculture Competence

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3