Efficient binary and QAM optical modulation in ultra-compact MZI structures utilizing indium-tin-oxide

Author:

Mohammadi-Pouyan Sohrab,Miri Mehdi,Sheikhi Mohammad Hossein

Abstract

AbstractA design for a CMOS-compatible active waveguide is proposed in which the epsilon-near-zero (ENZ) property of the indium-tin-oxide (ITO) is used to induce large variations in the real and imaginary parts of the waveguide effective index. The proposed waveguide comprises a TiN/HfO2/ITO metal–oxide–semiconductor (MOS) structure where the speed and power consumption are significantly improved by the application of the TiN and realization of double accumulation layers in the ITO. Simulations show the insertion loss (IL) of 0.38 dB/μm, extinction ratio (ER) of 11 dB/μm, the energy consumption of 11.87fJ/bit and electrical bandwidth of 280 GHz when the designed waveguide is used as an electro-absorption modulator. The waveguide is then used in an MZI structure to design binary and quadrature-amplitude-modulator (QAM) modulators. For binary modulator, the IL, ER, and VπLπ figures of merit are found to be 1.24 dB, 54 dB, and 6.4 V μm, respectively, which show substantial improvement over previous ITO-based designs. In the QAM design, the symmetry in the real and imaginary parts of the waveguide effective index is employed to obviate the need for additional phase shift elements. This considerably reduces the overall length of the proposed QAM modulator and improves efficiency. Simulations show the energy consumption and bit rate, of 2fJ/bit and 560 Gbps, respectively in a 4-QAM modulator with the overall length of 6.2 μm. The symmetry properties of the proposed waveguide can be further exploited to realize quadrature-phase-shift-keying (QPSK) modulators which here is used in combination with the 4-QAM to propose a design for the more advanced modulation scheme of 16-QAM. The design of ITO-based QAM modulators is here reported for the first time and the abovementioned performance parameters show the unique properties of these modulators in terms of footprint, energy consumption and modulation-speed.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3