A comparative analysis of compression bearing capacity in recycled concrete brick walls and composite walls incorporating coal-ash blocks

Author:

Li Jianhua,Xu Xueyong,Liu Xiaoqin

Abstract

AbstractIn the face of the problem of waste disposal in the demolition of concrete structures, a composite wall composed of recycled concrete bricks and fly ash blocks was proposed, and based on the previous thermal performance research, its axial compression performance were further studied. Four types of walls were designed and constructed: (1) clay brick masonry (CBM), (2) recycled concrete brick masonry (RBM), (3) bilateral clay bricks masonry with coal-ash blocks sandwich insulation wall (CFCM), and (4) bilateral recycled concrete bricks masonry with coal-ash blocks sandwich insulation wall (RFRM). The test results showed that recycled concrete brick masonry exhibited a higher bearing capacity than clay brick masonry. The ultimate load of RBM was 15% higher than that of CBM. Moreover, the ultimate load of CFCM was 21% higher than that of CBM. Following the addition of sandwich coal-ash blocks in RBM, its ultimate load increased by over 42% than that of CBM. Following the addition of coal-ash blocks sandwich in both clay and recycled concrete bricks masonry, both the bearing capacity and strain exhibited improvement, the yielding load and compressive strength of them increased. Thus, it could be concluded that coal-ash blocks improved its bearing capacity. Based on the analysis of the axial compression tests, a theoretical computational model was developed and a computational expression to explain the compressive bearing capacity of a two-sided brick with coal-ash blocks sandwich insulation wall. Comparisons between the test ultimate loads (FT) and the estimated ultimate loads (FE) confirmed the accuracy of the theoretical calculation model for the compressive bearing capacity. Thus, theoretical computational models are highly recommended for the design of two-sided bricks with insulating walls constructed from coal-ash blocks being sandwiched together. This study provides a theoretical basis for the engineering application of recycled concrete brick wall and fly ash block composite wall.

Funder

Public welfare research project of Huzhou City

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3