Quantification of node importance in rain gauge network: influence of temporal resolution and rain gauge density

Author:

Tiwari Shubham,Jha Sanjeev Kumar,Singh Ankit

Abstract

AbstractRain gauge network is important for collecting rainfall information effectively and efficiently. Rain gauge networks have been studied for several decades from a range of hydrological perspectives, where rain gauges with unique or non-repeating information are considered as important. However, the problem of quantification of node importance and subsequent identification of the most important nodes in rain gauge networks have not yet been extensively addressed in the literature. In this study, we use the concept of the complex networks to evaluate the Indian Meteorological Department (IMD) monitored 692 rain gauge in the Ganga River Basin. We consider the complex network theory-based Degree Centrality (DC), Clustering Coefficient (CC) and Mutual Information (MI) as the parameters to quantify the rainfall variability associated with all the rain gauges in the network. Multiple rain gauge network scenario with varying rain gauge density (i.e. Network Size (NS) = 173, 344, 519, and 692) and Temporal Resolution (i.e. TR = 3 hours, 1 day, and 1 month) are introduced to study the effect of rain gauge density, gauge location and temporal resolution on the node importance quantification. Proxy validation of the methodology was done using a hydrological model. Our results indicate that the network density and temporal resolution strongly influence a node’s importance in rain gauge network. In addition, we concluded that the degree centrality along with clustering coefficient is the preferred parameter than the mutual information for the node importance quantification. Furthermore, we observed that the network properties (spatial distribution, DC, Collapse Correlation Threshold (CCT), CC Range distributions) associated with TR = 3 hours and 1 day are comparable whereas TR = 1 month exhibit completely different trends. We also found that the rain gauges situated at high elevated areas are extremely important irrespective of the NS and TR. The encouraging results for the quantification of nodes importance in this study seem to indicate that the approach has the potential to be used in extreme rainfall forecasting, in studying changing rainfall patterns and in filling gaps in spatial data. The technique can be further helpful in the ground-based observation network design of a wide range of meteorological parameters with spatial correlation.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3