Intriguing physicochemical properties and impact of co-dopants on N-doped graphene oxide based ZnS nanowires for photocatalytic application

Author:

Dake D. V.,Raskar N. D.,Mane V. A.,Sonpir R. B.,Stathatos E.,Vasundhara M.,Meena R.,Asokan K.,Dole B. N.

Abstract

AbstractSuperparamagnetic N-doped graphene oxide (GO)- with ZnS nanowires was synthesized by a one-step hydrothermal method by doping dilute amounts of Ga, Cr, In, and Al ions for water treatment and biomedical applications. In these experiments, to enhance their properties, 2% of Ga3+, In3+, and or Al3+ were codoped along with 2% Cr ions in these ZnS nanowires. The nanocomposite with the composition, In0.02Cr0.02Zn0.96S, has better photocatalytic efficiency than other co-doped nanocomposites. The In (metalloids) and Cr (transition metal ion) are the best combinations to increase the magnetic properties which are beneficial for photocatalytic activity. Synthesized nanocomposite materials were characterized by several techniques such as X-ray diffraction, Field emission-scanning electron microscope (FESEM) with EDAX, vibrating sample magnetometer (VSM), UV–Vis, X-ray photoelectron spectroscopy (XPS), and fluorescence spectroscopy. The correlation of intriguing magnetic properties with their photocatalytic properties is also discussed. XPS was employed for the detection of surface defects, phase transformation, and the nature of chemical components present in the nanocomposites. The Frankel and substitutional defects have a direct impact on photocatalytic activity that was determined from the fluorescence (FL) spectroscopy. FL and XPS reveal that the Cr and In codoped composite has a higher percentage of defects hence its photocatalytic efficiency reaches 94.21%.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3