Flood sensitivity assessment of super cities

Author:

Wang Zijun,Chen Xiangyu,Qi Zhanshuo,Cui Chenfeng

Abstract

AbstractIn the context of global urbanization, more and more people are attracted to these cities with superior geographical conditions and strategic positions, resulting in the emergence of world super cities. However, with the increasing of urban development, the underlying surface of the city has changed, the soil originally covered with vegetation has been substituted by hardened pavement such as asphalt and cement roads. Therefore, the infiltration capacity of urban rainwater is greatly limited, and waterlogging is becoming more and more serious. In addition, the suburbs of the main urban areas of super cities are usually villages and mountains, and frequent flash floods seriously threaten the life and property safety of people in there. Flood sensitivity assessment is an effective method to predict and mitigate flood disasters. Accordingly, this study aimed at identifying the areas vulnerable to flood by using Geographic Information System (GIS) and Remote Sensing (RS) and apply Logistic Regression (LR) model to create a flood sensitivity map of Beijing. 260 flood points in history and 12 predictors [elevation, slope, aspect, distance to rivers, Topographic Wetness Index (TWI), Stream Power Index (SPI), Sediment Transport Index (STI), curvature, plan curvature, Land Use/Land Cover (LULC), soil, and rainfall] were used in this study. Even more noteworthy is that most of the previous studies discussed flash flood and waterlogging separately. However, flash flood points and waterlogging points were included together in this study. We evaluated the sensitivity of flash flood and waterlogging as a whole and obtained different results from previous studies. In addition, most of the previous studies focused on a certain river basin or small towns as the study area. Beijing is the world's ninth largest super cities, which was unusual in previous studies and has important reference significance for the flood sensitivity analysis of other super cities. The flood inventory data were randomly subdivided into training (70%) and test (30%) sets for model construction and testing using the Area Under Curve (AUC), respectively. The results turn out that: (1) elevation, slope, rainfall, LULC, soil and TWI were highly important among these elements, and were the most influential variables in the assessment of flood sensitivity. (2) The AUC of the test dataset revealed a prediction rate of 81.0%. The AUC was greater than 0.8, indicating that the model assessment accuracy was high. (3) The proportion of high risk and extremely high risk areas was 27.44%, including 69.26% of the flood events in this study, indicating that the flood distribution in these areas was relatively dense and the susceptibility was high. Super cities have a high population density, and once flood disasters occur, the losses brought by them are immeasurable. Thus, flood sensitivity map can provide meaningful information for policy makers to enact appropriate policies to reduce future damage.

Funder

National Natural Science Foundation-Xinjiang Joint Fund “Effects of climate change on Hydrological drought in the Manas River Basin, Xinjiang”

NSFC general project “Response Simulation and Sensitivity Assessment of Agricultural Water Resources System in Northwest Arid Region under changing Environment”

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3