Transmutation of long-lived fission products in an advanced nuclear energy system

Author:

Sun X. Y.,Luo W.,Lan H. Y.,Song Y. M.,Gao Q. Y.,Zhu Z. C.,Chen J. G.,Cai X. Z.

Abstract

AbstractDisposal of long-lived fission products (LLFPs) produced in reactors has been paid a lot attention for sustainable and clean nuclear energy. Although a few transmutation means have been proposed to address this issue, there are still scientific and/or engineering challenges to achieve efficient transmutation of LLFPs. In this study, we propose a novel concept of advanced nuclear energy system (ANES) for transmuting LLFPs efficiently without isotopic separation. The ANES comprises intense photoneutron source (PNS) and subcritical reactor, which consist of lead–bismuth (Pb-Bi) layer, beryllium (Be) layer, and fuel, LLFPs and shield assemblies. The PNS is produced by bombarding radioactive cesium and iodine target with a laser-Compton scattering (LCS) γ-ray beam. We investigate the effect of the ANES system layout on transmutation efficiency by Monte Carlo simulations. It is found that a proper combination of the Pb-Bi layer and the Be layer can increase the utilization efficiency of the PNS by a factor of ~ 10, which helps to decrease by almost the same factor the LCS γ-beam intensity required for driving the ANES. Supposing that the ANES operates over 20 years at a normal thermal power of 500 MWt, five LLFPs including 99Tc, 129I, 107Pd, 137Cs and 79Se could be transmuted by more than 30%. Their effective half-lives thus decrease drastically from ~ 106 to less than 102 years. It is suggested that this successful implementation of the ANES paves the avenue towards practical transmutation of LLFPs without isotopic separation.

Funder

National Natural Science Foundation of China

Youth Talent Project of Hunan Province, China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3