Uncertainty propagation in pore water chemical composition calculation using surrogate models

Author:

Sochala Pierre,Chiaberge Christophe,Claret Francis,Tournassat Christophe

Abstract

AbstractPerformance assessment in deep geological nuclear waste repository systems necessitates an extended knowledge of the pore water chemical conditions prevailing in host-rock formations. In the last two decades, important progress has been made in the experimental characterization and thermodynamic modeling of pore water speciation, but the influence of experimental artifacts and uncertainties of thermodynamic input parameters are seldom evaluated. In this respect, we conducted an uncertainty propagation study in a reference geochemical model describing the pore water chemistry of the Callovian-Oxfordian clay formation. Nineteen model input parameters were perturbed, including those associated to experimental characterization (leached anions, exchanged cations, cation exchange selectivity coefficients) and those associated to generic thermodynamic databases (solubilities). A set of 13 quantities of interest were studied by the use of polynomial chaos expansions built non-intrusively with a least-squares forward stepwise regression approach. Training and validation sets of simulations were carried out using the geochemical speciation code PHREEQC. The statistical results explored the marginal distribution of each quantity of interest, their bivariate correlations as well as their global sensitivity indices. The influence of the assumed distributions for input parameters uncertainties was evaluated by considering two parametric domain sizes.

Funder

European project DONUT

Program LabEx VOLTAIRE

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3