Establishment of novel in vitro culture system with the ability to reproduce oral biofilm formation on dental materials

Author:

Kohno Tomoki,Kitagawa Haruaki,Tsuboi Ririko,Nishimura Yuma,Imazato Satoshi

Abstract

AbstractIntensive research has been conducted with the aim of developing dental restorative/prosthetic materials with antibacterial and anti-biofilm effects that contribute to controlling bacterial infection in the oral cavity. In situ evaluations were performed to assess the clinical efficacy of these materials by exposing them to oral environments. However, it is difficult to recruit many participants to collect sufficient amount of data for scientific analysis. This study aimed to assemble an original flow-cell type bioreactor equipped with two flow routes and assess its usefulness by evaluating the ability to reproduce in situ oral biofilms formed on restorative materials. A drop of bacterial suspension collected from human saliva and 0.2% sucrose solution was introduced into the assembled bioreactor while maintaining the incubation conditions. The bioreactor was able to mimic the number of bacterial cells, live/dead bacterial volume, and volume fraction of live bacteria in the in situ oral biofilm formed on the surface of restorative materials. The usefulness of the established culture system was further validated by a clear demonstration of the anti-biofilm effects of a glass-ionomer cement incorporating zinc-releasing glasses when evaluated by this system.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3