Deciphering Dynamical Nonlinearities in Short Time Series Using Recurrent Neural Networks

Author:

Nagarajan Radhakrishnan

Abstract

Abstract Surrogate testing techniques have been used widely to investigate the presence of dynamical nonlinearities, an essential ingredient of deterministic chaotic processes. Traditional surrogate testing subscribes to statistical hypothesis testing and investigates potential differences in discriminant statistics between the given empirical sample and its surrogate counterparts. The choice and estimation of the discriminant statistics can be challenging across short time series. Also, conclusion based on a single empirical sample is an inherent limitation. The present study proposes a recurrent neural network classification framework that uses the raw time series obviating the need for discriminant statistic while accommodating multiple time series realizations for enhanced generalizability of the findings. The results are demonstrated on short time series with lengths (L = 32, 64, 128) from continuous and discrete dynamical systems in chaotic regimes, nonlinear transform of linearly correlated noise and experimental data. Accuracy of the classifier is shown to be markedly higher than ≫50% for the processes in chaotic regimes whereas those of nonlinearly correlated noise were around ~50% similar to that of random guess from a one-sample binomial test. These results are promising and elucidate the usefulness of the proposed framework in identifying potential dynamical nonlinearities from short experimental time series.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3