Hybrid machine learning approach for landslide prediction, Uttarakhand, India

Author:

Kainthura Poonam,Sharma Neelam

Abstract

AbstractNatural disasters always have a damaging effect on our way of life. Landslides  cause serious damage to both human and natural resources around the world. In this paper, the prediction accuracy of five hybrid models for landslide occurrence in the Uttarkashi, Uttarakhand (India) was evaluated and compared. In this approach, the Rough Set theory coupled with five different models namely Bayesian Network (HBNRS), Backpropagation Neural Network (HBPNNRS), Bagging (HBRS), XGBoost (HXGBRS), and Random Forest (HRFRS) were taken into account. The database for the models development was prepared using fifteen conditioning factors that had 373 landslide and 181 non-landslide locations that were then randomly divided into training and testing locations with a ratio of 75%:25%. The appropriateness and predictability of these conditioning factors were assessed using the multi-collinearity test and the least absolute shrinkage and selection operator approach. The accuracy, sensitivity, specificity, precision, and F-Measures, and the area under the curve (AUC)-receiver operating characteristics curve, were used to evaluate and compare the performance of the individual and hybrid created models. The findings indicate that the constructed hybrid model HXGBRS (AUC = 0.937, Precision = 0.946, F1-score = 0.926 and Accuracy = 89.92%) is the most accurate model for predicting landslides when compared to other models (HBPNNRS, HBNRS, HBRS, and HRFRS). Importantly, when the fusion is performed with the rough set method, the prediction capability of each model is improved. Simultaneously, the HXGBRS model proposed shows superior stability and can effectively avoid overfitting. After the core modules were developed, the user-friendly platform was designed as an integrated GIS environment using dynamic maps for effective landslide prediction in large prone areas. Users can predict the probability of landslide occurrence for selected region by changing the values of a conditioning factors. The created approach could be beneficial for predicting the impact of landslides on slopes and tracking landslides along national routes.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3