Circadian rhythm impacts preclinical FDG-PET quantification in the brain, but not in xenograft tumors

Author:

Krueger Marcel A.,Calaminus Carsten,Schmitt Julia,Pichler Bernd J.

Abstract

AbstractThe inner clock of biological organisms plays a pivotal role and has strong effects on metabolic processes such as glucose consumption. Since the commonly used positron emission tomography (PET) tracer 18F-flourodeoxygucose (FDG) is a glucose analogue, it is not surprising that the FDG distribution in mice and humans has been shown to succumb to daily rhythms. In preclinical studies, the circadian rhythm of animals is often not considered, and studies are performed at different times of day. Only a few studies have analyzed the effect of the circadian rhythm on FDG uptake in mice, and none of these studies included human tumor xenografts. Therefore, it is not known how strongly a preclinical tumor study is influenced by the time of day. In this work, the effect of the circadian rhythm on FDG uptake in human tumor xenografts and other organs was analyzed. CD1 nu/nu mice were kept for three weeks under a 12 h light/12 h dark rhythm and then injected s.c. with PC3 or A431 tumor cells. When the tumors had reached an appropriate volume, FDG-PET scans were performed on different animal groups (n = 4–5) every 4 h over a time period from 8 A.M. to 8 P.M. Tracer uptake in the tumors and in other organs was determined based on the PET scans and biodistribution studies. The standardized uptake value and %injected dose/cc of the tumors remained constant over the whole observed time period, and no statistically significant differences were determined according to the PET analysis. In the brain, we found a small but statistically significant increase from noon to 4 P.M., which led to a decrease in the tumor-to-brain ratio. No evidence for an effect of the circadian rhythm on FDG uptake could be found in subcutaneous tumors, however, in brain studies the circadian rhythm needs to be considered.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3