The effect of increased channel interaction on speech perception with cochlear implants

Author:

Goehring Tobias,Archer-Boyd Alan W.,Arenberg Julie G.,Carlyon Robert P.

Abstract

AbstractCochlear implants (CIs) are neuroprostheses that partially restore hearing for people with severe-to-profound hearing loss. While CIs can provide good speech perception in quiet listening situations for many, they fail to do so in environments with interfering sounds for most listeners. Previous research suggests that this is due to detrimental interaction effects between CI electrode channels, limiting their function to convey frequency-specific information, but evidence is still scarce. In this study, an experimental manipulation called spectral blurring was used to increase channel interaction in CI listeners using Advanced Bionics devices with HiFocus 1J and MS electrode arrays to directly investigate its causal effect on speech perception. Instead of using a single electrode per channel as in standard CI processing, spectral blurring used up to 6 electrodes per channel simultaneously to increase the overlap between adjacent frequency channels as would occur in cases with severe channel interaction. Results demonstrated that this manipulation significantly degraded CI speech perception in quiet by 15% and speech reception thresholds in babble noise by 5 dB when all channels were blurred by a factor of 6. Importantly, when channel interaction was increased just on a subset of electrodes, speech scores were mostly unaffected and were only significantly degraded when the 5 most apical channels were blurred. These apical channels convey information up to 1 kHz at the apical end of the electrode array and are typically located at angular insertion depths of about 250 up to 500°. These results confirm and extend earlier findings indicating that CI speech perception may not benefit from deactivating individual channels along the array and that efforts should instead be directed towards reducing channel interaction per se and in particular for the most-apical electrodes. Hereby, causal methods such as spectral blurring could be used in future research to control channel interaction effects within listeners for evaluating compensation strategies.

Funder

Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3