Skin strata delineation in reflectance confocal microscopy images using recurrent convolutional networks with attention

Author:

Bozkurt Alican,Kose Kivanc,Coll-Font Jaume,Alessi-Fox Christi,Brooks Dana H.,Dy Jennifer G.,Rajadhyaksha Milind

Abstract

AbstractReflectance confocal microscopy (RCM) is an effective non-invasive tool for cancer diagnosis. However, acquiring and reading RCM images requires extensive training and experience, and novice clinicians exhibit high discordance in diagnostic accuracy. Quantitative tools to standardize image acquisition could reduce both required training and diagnostic variability. To perform diagnostic analysis, clinicians collect a set of RCM mosaics (RCM images concatenated in a raster fashion to extend the field view) at 4–5 specific layers in skin, all localized in the junction between the epidermal and dermal layers (dermal-epidermal junction, DEJ), necessitating locating that junction before mosaic acquisition. In this study, we automate DEJ localization using deep recurrent convolutional neural networks to delineate skin strata in stacks of RCM images collected at consecutive depths. Success will guide to automated and quantitative mosaic acquisition thus reducing inter operator variability and bring standardization in imaging. Testing our model against an expert labeled dataset of 504 RCM stacks, we achieved $$88.07\%$$ 88.07 % classification accuracy and nine-fold reduction in the number of anatomically impossible errors compared to the previous state-of-the-art.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3