Edge-guided second-order total generalized variation for Gaussian noise removal from depth map

Author:

Li Shuaihao,Zhang Bin,Yang Xinfeng,Zhu Weiping

Abstract

AbstractTotal generalized variation models have recently demonstrated high-quality denoising capacity for single image. In this paper, we present an accurate denoising method for depth map. Our method uses a weighted second-order total generalized variational model for Gaussian noise removal. By fusing an edge indicator function into the regularization term of the second-order total generalized variational model to guide the diffusion of gradients, our method aims to use the first or second derivative to enhance the intensity of the diffusion tensor. We use the first-order primal–dual algorithm to minimize the proposed energy function and achieve high-quality denoising and edge preserving result for depth maps with high -intensity noise. Extensive quantitative and qualitative evaluations in comparison to bench-mark datasets show that the proposed method provides significant higher accuracy and visual improvements than many state-of-the-art denoising algorithms.

Funder

the Nature Science Foundation of China

the National Mapping and Geographic Information Bureau of China

the National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3