Abstract
AbstractSupport vector machine (SVM) and genetic algorithm were successfully used to predict the changes in the prevalence rate (ΔPR) measured by the increase of reported cases per million population from the 16th to the 45th day during a nation’s lockdown after the COVID-19 outbreak. The national cultural indices [individualism–collectivism (Ind), tightness–looseness (Tight)], and the number of people per square kilometer (Pop_density) were used to develop the SVM model of lnΔPR. The SVM model has R2 of 0.804 for the training set (44 samples) and 0.853 for the test set (11 samples), which were much higher than those (0.416 and 0.593) of the multiple linear regression model. The statistical results indicate that there are nonlinear relationships between lnΔPR and Tight, Ind, and Pop_density. It is feasible to build the model for lnΔPR with SVM algorithm. The results suggested that the risk of COVID-19 epidemic spread will be reduced if a nation implements severe measures to strengthen the tightness of national culture and individuals realize the importance of collectivism.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献